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Unit commitment (UC) is a very important optimization task, which plays a major role in the daily oper-
ation planning of electric power systems that is why UC is a core research topic attracting a lot of research
efforts. An innovative method based on an advanced memetic algorithm (MA) for the solution of price
based unit commitment (PBUC) problem is proposed. The main contributions of this paper are: (i) an
innovative two-level tournament selection, (ii) a new multiple window crossover, (iii) a novel window
in window mutation operator, (iv) an innovative local search scheme called elite mutation, (v) new pop-
ulation initialization algorithm that is specific to PBUC problem, and (vi) new PBUC test systems includ-
ing ramp up and ramp down constraints so as to provide new PBUC benchmarks for future research. The
innovative two-level tournament selection mechanism contributes to the reduction of the required CPU
time. The method has been applied to systems of up to 110 units and the results show that the proposed
memetic algorithm is superior to other methods since it finds the optimal solution with a high success
rate and within a reasonable execution time.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Unit commitment (UC) is a very important optimization task,
which plays a major role in the daily operation planning of electric
power systems that is why UC is a core research topic attracting a
lot of research efforts [1–7].

In the regulated electricity markets, UC refers to optimizing
generation resources over a daily to weekly time horizon to satisfy
load demand at minimum operational cost while satisfying pre-
vailing constraints, such as minimum up/down time, ramping up/
down, and minimum/maximum generating capacity. Since the re-
lated objective would be to minimize the operational cost, UC is
commonly referred to as cost-based unit commitment (CBUC).
The optimal solution to the CBUC problem can be obtained by com-
plete enumeration, which is prohibitive in practice owing to its
excessive computational resource requirements [8]. The need for
practical, cost-effective UC solutions, led to the development of
various UC algorithms that produce suboptimal, but efficient
scheduling for real sized power systems comprising hundreds of
generators [9]. CBUC methods include priority list methods [8], dy-
namic programming [10], Lagrangian relaxation (LR) [11], branch-
and-bound [12], Benders decomposition [13], and mixed-integer
programming [14]. Moreover, simulated annealing [15], expert
systems [16], artificial neural networks [17], genetic algorithms
ll rights reserved.
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[18], and hybrid techniques [19] have also been used for the solu-
tion of the CBUC problem.

In the deregulated electricity markets, the unit commitment
used by generating companies (GENCOs) is referred to as price
based unit commitment (PBUC) in which optimization of genera-
tion resources takes place in order to maximize the GENCOs total
profit [20,21]. The PBUC is a large-scale, nonconvex, nonlinear,
mixed-integer optimization problem, belonging to the NP-hard
class [20,21]. Because electricity markets are changing rapidly,
there is strong interest on how new PBUC models are solved. That
is why various methods have been proposed for the solution of
PBUC problem including Lagrangian relaxation [22], mixed-integer
programming [23–29], genetic algorithms [30,31], selective enu-
meration [32], and hybrid methods [33–35].

In [36], the memetic algorithms were introduced for the first
time. Memetic algorithms can be viewed as the hybridization of
evolutionary algorithms (exploration component) and local search
(exploitation component). Their main advantages are their generic
nature, which enables them to successfully tackle almost any opti-
mization problem and their ease to embed problem specific knowl-
edge and constraints [37]. Memetic algorithms have been
successfully applied for the solution of difficult power system
problems [38–41], but have not been applied to PBUC so far.

A new approach based on an advanced memetic algorithm (MA)
is proposed in this paper for the solution of PBUC problem. The
main contributions of this paper are: (i) an innovative two-level
tournament selection, (ii) a new multiple window crossover, (iii)
a novel window in window mutation operator, (iv) an innovative
local search scheme called elite mutation, (v) new population
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Nomenclature

A(i) constant cost coefficient of unit i ($/h)
B(i) linear cost coefficient of unit i ($/MW h)
C(i) quadratic cost coefficient of unit i ($/MW2 h)
Cost(i, t) production cost of unit i at hour t ($/h)
CT(i) cooling constant of unit i (h)
D(i) cold start staff and maintenance cost of unit i ($/h)
d(t) forecasted demand at hour t (MW)
E(i) cold start cost of unit i ($/h)
F(i, t) profit of unit i at hour t ($/h)
FC(i, t) fuel cost of unit i at hour t ($/h)
i unit index
I(i, t) operating status of unit i at hour t (1 = On, 0 = Off)
N number of generating units
P(i, t) power generation of unit i at hour t (MW)
pgm(t) forecasted market price for energy at hour t ($/MW h)
Pmax(i) maximum power output of unit i (MW)

Pmin(i) minimum power output of unit i (MW)
Rdown(i) ramp down rate of unit i (MW/h)
Rup(i) ramp up rate of unit i (MW/h)
Rvn(i, t) revenue of unit i at hour t ($/h)
SD(i) shut down cost of unit i ($)
SU(i, t) start up cost of unit i at hour t ($/h)
t hour index
T number of time periods of the unit commitment (UC)

planning horizon (h). The UC time step is 1 h.
Tdown(i) minimum down time of unit i (h)
Tup(i) minimum up time of unit i (h)
X(i, t) if X(i, t) > 0, then the cumulative up time of unit i at hour

t is X(i, t) hours. On the other hand, if X(i, t) < 0, then the
cumulative down time of unit i at hour t is �X(i, t) hours

Xoff(i, t) cumulative down time of unit i at hour t (h)
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initialization algorithm that is specific to PBUC problem, and (vi) new
PBUC test systems including ramp up and ramp down constraints
so as to provide new PBUC benchmarks for future research. The
main advantages of the proposed memetic algorithm are: (a) flex-
ibility in modelling problem constraints because the PBUC problem
is not decomposed either by time or by unit, (b) easier convergence
to the optimum solution thanks to the proposed operators and lo-
cal search schemes, (c) easy implementation to work on parallel
computers, and (d) production of multiple unit commitment
schedules, some of which may be well suited to situations that
may arise quickly due to unexpected contingencies. The method
has been applied to systems of up to 110 units and the results
show that the proposed memetic algorithm is superior to other
methods.

The paper is organized as follows. The PBUC problem is for-
mulated in Section 2 and a detailed description of the proposed
MA used to solve it is found in Section 3. Section 4 presents MA
results for test systems up to 110 units and comparisons with
results obtained by other solving methods. Section 5 concludes
the paper.

2. PBUC formulation

2.1. Problem formulation

The profit of unit i at hour t is calculated by the following for-
mula [20,21]:

Fði; tÞ ¼ Rvnði; tÞ � Costði; tÞ: ð1Þ

It must be noted that negative profit indicates losses.
Revenue and cost of unit i at hour t are calculated by:

Rvnði; tÞ ¼ pgmðtÞ � Pði; tÞ � Iði; tÞ; ð2Þ

Costði; tÞ ¼ FCði; tÞ � Iði; tÞ þ SUði; tÞ � Iði; tÞ � ½1� Iði; t � 1Þ�

þ SDðiÞ � Iði; t � 1Þ � ½1� Iði; tÞ�: ð3Þ

The fuel cost of unit i at hour t is a quadratic function of the unit
power output [21]:

FCði; tÞ ¼ AðiÞ þ BðiÞ � Pði; tÞ þ CðiÞ � ½Pði; tÞ�2: ð4Þ

Start up cost of unit i at hour t depends on the total off-hours
that unit i was halted and is modelled by [21]:
SUði; tÞ ¼ DðiÞ þ EðiÞ � 1� exp �Xoff ði; tÞ
CTðiÞ

� �� �
: ð5Þ

Shut down cost SD(i) of unit i has a constant value per
shutdown.

The PBUC problem is mathematically formulated as follows
[20–35]:

max
XT

t¼1

XN

i¼1

Fði; tÞ; ð6Þ

subject to the following constraints:
a. Unit power generation limits [20–35]:

PminðiÞ � Iði; tÞ 6 Pði; tÞ 6 PmaxðiÞ � Iði; tÞ; 8i ð7Þ

b. Minimum up time and down time constraints [20,22,31–
35]:

½Xði; t � 1Þ � TupðiÞ� � ½Iði; t � 1Þ � Iði; tÞ�P 0; 8i;8t; ð8Þ
½�Xði; t � 1Þ � TdownðiÞ� � ½Iði; tÞ � Iði; t � 1Þ�P 0; 8i;8t; ð9Þ

c. Ramp rate limits [20,22,31,33,35]:
Pði; tÞ � Pði; t � 1Þ 6 RupðiÞ; as unit i ramps up; ð10Þ
Pði; t � 1Þ � Pði; tÞ 6 RdownðiÞ; as unit i ramps down: ð11Þ

d. Demand constraint [20,22,25,30–35]:XN

i¼1

Pði; tÞ � Iði; tÞ 6 dðtÞ; 8t: ð12Þ

It should be noted that (7), (10), and (11) can be combined as
follows [42]:

P0maxði; tÞ ¼min½PmaxðiÞ; Pði; t � 1Þ þ RupðiÞ�;
as unit i ramps up; ð13Þ
P0minði; tÞ ¼max½PminðiÞ; Pði; t � 1Þ � RdownðiÞ�;
as unit i ramps down: ð14Þ

Eq. (13) computes P0maxði; tÞ, which is the updated Pmax(i) when
the ramp up constraint of unit i is included. It is obvious that
P0maxði; tÞ 6 PmaxðiÞ meaning that the inclusion of the ramp up con-
straint produces an upper bound for P(i, t) with lower value than
when excluded.

Eq. (14) computes P0minði; tÞ, which is the updated Pmin(i) when
the ramp down constraint of unit i is included. It is obvious that
P0minði; tÞP PminðiÞ meaning that the inclusion of the ramp down
constraint produces a lower bound for P(i, t) with higher value than
when excluded.
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The coupling demand constraint (12) complicates the solution
of the PBUC problem, since the PBUC cannot be decomposed by
unit. However, the demand constraint (12) appears in many PBUC
formulations of the literature, e.g., [20,22,25,30–35], because each
hour the GENCO has to produce no more power than the demand
of that hour [20,22,25,30–35].

Based on the above mathematical formulation, the PBUC prob-
lem can be stated as follows: for a GENCO with N generating units,
and given a certain market price profile of energy as well as a cer-
tain demand profile, it is required to determine the start-up/shut-
down times and the power output of all the generating units at
each hour t over a specified planning horizon T, so that the gener-
ator’s total profit (6) is maximized, subject to the unit and demand
constraints (7)–(12).
population, penalty, generations,
NM, ECMP, ECMS, NEM

generations > 0 EndNo

initialization
3. Proposed methodology

3.1. Memetic algorithms

Every living being obtains knowledge from two sources. The
first is the gene source directly inherited from the being’s parents
and the second source are personal and cultural experiences.

Based upon the antecedent observation, a memetic algorithm
(MA) is a hybrid computational model of those two sources. The
first source is modelled by a genetic algorithm (GA) that mimics
biological or Darwinian evolution and the second source is mod-
elled by a local search algorithm that mimics cultural evolution
or the evolution of ideas.

The unit of information in a GA is termed as a gene whereas in a
MA is termed as a meme. Genes are improved by crossover and
mutation operators that are part of a GA and memes are improved
by a local search operator.
generations := generations – 1

profit calculation

U(0,1) < ECMP elite mutation

mating

mutation

Yes

No

Yes

mates selection
3.2. Chromosome encoding

A convenient binary mapping to a chromosome representation
is selected in which zero represents the off state and one repre-
sents the on state of a unit. A candidate solution (chromosome)
is a two dimensional matrix whose number of rows is N and num-
ber of columns is T.

Fig. 1 shows an example of chromosome representation of unit i
for a planning horizon of T = 8 h. It is also given that the initial state
of unit i is X(i, 0) = �2, i.e., unit i was 2 h continuously off at the
start of the planning horizon. Since unit i is still off for the first
3 h (Fig. 1), it is concluded that Xoff(i, 3) = 5. Similarly, it follows
that Xoff(i, 6) = 1. It is concluded that for a given chromosome,
Xoff(i, t) takes a fixed value, so the start up cost takes also a fixed
value, as (5) shows, thus F(i, t) is a quadratic function of the unit
power output, i.e., the power dispatch problem is in fact a
quadratic programming problem. Fig. 1 shows that unit i is off for
the first three hours, while it turns on at hour 4, so X(i, 3) = �3.
Similarly, it follows that X(i, 6) = �1. Unit i is on for the hours 4
and 5, while it turns off at hour 6, so X(i, 5) = 2.

The information available in the chromosome together with the
initial state (continuous up or down time, X(i, 0), "i) of the units is
all one needs to accurately model all time dependent constraints of
the PBUC problem. This great modelling flexibility is one of the
advantages of the proposed memetic algorithm solution, because
the PBUC problem is not decomposed either by time or by unit.
Unit Hours (1-8) 
i 0 0 0 1 1 0 1 1

Fig. 1. Example of chromosome representation. The initial state of unit i is
X(i, 0) = �2, i.e., unit i was 2 h continuously off at the start of the planning horizon.
3.3. Population of chromosomes

A population of chromosomes is stored in a three dimensional
matrix. Commitment scenarios take up two dimensions, one for
the units and one for the hours of the planning horizon. The third
dimension can be viewed as a stack of commitment scenarios. The
top of the stack (k = 1) stores the elite chromosome, which is the
best scenario found so far by the MA.
3.4. Overview of the proposed MA methodology

Fig. 2 illustrates the flow chart of the proposed MA for the solu-
tion of the PBUC problem.

Seven parameters namely population size, penalty, number of
generations, NM, ECMP, ECMS and NEM are set by the user, as
Fig. 2 shows. The acronym NM stands for number of mutations,
ECMP stands for elite chromosome mutation probability, ECMS
stands for elite chromosome mutated scenarios and NEM stands
for number of elite mutations. Details for NM are provided in
Fig. 2. Memetic algorithm block diagram. U(0, 1) denotes a random number
uniformly distributed in the interval (0, 1).
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Section 3.9; for ECMP, ECMS and NEM in Section 3.10; and for
penalty parameter in Section 3.6.

It can be seen from Fig. 2 that the proposed MA is composed of
six main blocks: (1) initialization, (2) profit calculation, (3) mates
selection, (4) mating, (5) mutation, and (6) elite mutation. These
six blocks will be analytically described in Sections 3.5–3.10.

3.5. Initialization

This paper proposes a problem specific initialization according
to which the population is initialized with chromosomes that al-
ways satisfy Tup(i) and Tdown(i) constraints (8) and (9). It should
be noted that the population is not randomly initialized because
computational experiments showed that it was very difficult for
the algorithm to produce enough feasible solutions. More specifi-
cally, a contribution of this paper is that every chromosome is ini-
tialized using randomly one of the following two proposed
chromosome initialization methods:

1. The first initialization method inserts a single window, full of
ones, which has random width in a manner that Tup(i) constraint
(8) is satisfied taking also into account the initial conditions
X(i, 0). For example, with this method, the chromosome’s unit
1, i.e., row 1 in Fig. 3, has been initialized. Unit 1 has Tup(1) = 4,
Tdown(1) = 3 and X(1, 0) = �1. More specifically, the proposed ini-
tialization process inserted a single window of ones, from hour 4
to hour 9, as illustrated with dark shading in Fig. 3.

2. The second initialization method, which is the dual of the first
method, inserts a single window, full of zeros, which has ran-
dom width in a manner that Tdown(i) constraint (9) is satisfied
taking also into account the initial conditions X(i, 0). For exam-
ple, with this method, the chromosome’s unit 2, i.e., row 2 in
Fig. 3, has been initialized. Unit 2 has Tup(2) = 2, Tdown(2) = 3
and X(2, 0) = 1. More specifically, the proposed initialization
process inserted a single window of zeros, from hour 5 to hour
9, as illustrated with light shading in Fig. 3.

3.6. Profit calculation

Profit calculation procedure carries out the following three
tasks:

1. Calculates the total profit for every chromosome k in the
population.

2. Calculates the average profit of the population, which is needed
in mates selection (Section 3.7).

3. Following task 1, if there is a chromosome that has higher profit
than the profit of the current elite, then these two chromo-
somes are swapped resulting in a new elite chromosome placed
at location k = 1.

Every chromosome’s k total profit, task 1, is calculated in two
phases:

1. The solution of the economic load dispatch (ELD) subproblem
for every hour t of the planning horizon gives the optimum
power generation of every committed unit i as well as the profit
for each hour. ELD is a quadratic programming (QP) problem
that is solved using the active set method [43].
Hours (1-10)Unit
1 1 1 1 1 

0 0 0 0 
1 0 0 0 1 0 
2 1 1 1 1 0 1 

Fig. 3. Application example of the proposed chromosome initialization process.
If at some hour t, unit i happens to be decommitted and at pre-
vious hour t � 1 has generated power greater than Rdown(i), then
the chromosome must be repaired by committing unit i at hour
t, otherwise ramp down constraint violation will occur.

Initially, P0minði; tÞ for every committed unit i is computed by
(14). If

P
8 i with Iði;tÞ¼1P0minði; tÞ > dðtÞ then the QP problem must

exclude (12), otherwise with (12) being inevitably violated
the algorithm will fail. Following the QP problem solution, the

amount penalty �
P
8 i with Iði;tÞ¼1Pði; tÞ � dðtÞ

h i
is subtracted from

chromosome’s k total profit, where penalty is the penalty
parameter set by the user. On the other hand, if (12) is not vio-
lated, then the QP problem must include (12) without any
amount subtracted from chromosome’s k total profit.

2. The minimum up time constraint (8) and the minimum down
time constraint (9) are checked for violations. Moreover, start
up costs (5) and shut down costs are subtracted from chromo-
some’s k total profit.
Whenever constraint (8) or constraint (9) is violated, then the
amount 10 � penalty � dg is subtracted from chromosome’s k
total profit, where penalty is the penalty parameter set by the
user, and dg is the degree of constraint (8) or constraint (9) vio-
lation. For example, if unit i has X(i, t) = 3 and Tup(i) = 5, then
dg = Tup(i) � X(i, t), i.e., dg = 2.

Another contribution of this paper is the use of different
significance penalties. More specifically, the violation of constraint
(8) and constraint (9) has significance equal to 10, whereas the
violation of constraint (12) has significance equal to 1. The
greater significance that (8) and (9) share in comparison with
(12) results in a stronger intimidation of the algorithm to
explore regions of (6) that violate (8) or (9) so as to ensure
that all generating units will not exceed their technical
specifications.

3.7. Mates selection

The original tournament selection [44] randomly picks a small
subset of chromosomes from the population and the highest profit
chromosome in this subset wins the tournament. This means that
for a given chromosome, the probability to win the tournament de-
pends on two factors: (i) the chromosome profit, and (ii) the subset
in which the chromosome will be randomly put. In other words, if
a chromosome becomes a member of one tournament subset it
might be discarded, whereas if it becomes a member of another
tournament subset it might win the tournament [44]. Conse-
quently, the original tournament selection utilizes only one level
of information that is local information: the tournament subset’s
profits.

This paper proposes a novel mates selection operator, which
alleviates the above mentioned disadvantage of the original
tournament selection by using a second and global level of infor-
mation: the population’s average profit. This innovative mates
selection operator is named two-level tournament selection
(2LTS) and selects mates based on the tournament subset’s prof-
its and the population’s average profit, i.e., in a fashion currently
not found in the optimization literature. In brief, the proposed
mates selection operator selects the most adapted (the most
fit) chromosomes that a current population has to offer. These
chromosomes are named mother chromosomes and will mate
with the elite chromosome giving one or in some cases two
offspring. This new 2LTS operator will be explained with the help
of Figs. 4 and 5.

Fig. 4 illustrates the flow chart of the proposed 2LTS operator.
The 2LTS algorithm works with two variables. The first variable
is k, which has a dual purpose: (1) it is a loop control variable so
the algorithm can terminate, and (2) it always points to the first



k < sole_offspring

     Pair Swap:
     1. Swap chromosomes k and sole_offspring,
     2. Swap chromosomes k+1 and sole_offspring+1.

End

sole_offspring := sole_offspring - 2

No

k := 2
sole_offspring := population + 1

population

Yes

cpk < ap

cpk+1 < ap

Yes

Yes

k < sole_offspring

     Chromosome Swap:
     Swap chromosomes k and k+1.

No

cpk+1 > cpk No

Yes

No

k := k + 2
No

Yes

Fig. 4. Two-level tournament selection (2LTS) block diagram.
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chromosome contained in the tournament subset. The second var-
iable is sole_offspring and when the 2LTS operator completes
mates selection, as will be shown later in this section, it indicates
the borderline between the collection of pairs of chromosomes that
require a sole offspring and the collection of pairs of chromosomes
that require two offspring so as to keep the population of chromo-
somes constant. The acronym cpk stands for the profit of chromo-
some in position k calculated by Section 3.6 task 1, while the
acronym ap stands for average profit of the population calculated
by Section 3.6 task 2. It can be seen from Fig. 4 that the proposed
2LTS operator is composed of two main blocks: (1) chromosome
swap, and (2) pair swap. These two blocks will be analytically de-
scribed in the rest of this section.

Fig. 5 illustrates an application example of the proposed 2LTS.
More specifically, Fig. 5a is the initial population before the
application of the proposed 2LTS operator. A series of intermedi-
ate steps are followed in Fig. 5b–e leading finally to Fig. 5f,
which is the final population after the completion of the pro-
posed 2LTS operator.

Going into the details of chromosome swap, Fig. 5a illustrates
that the elite chromosome is always stored in position k = 1 and
the rest of the population is divided into five pairs of chromo-
somes, i.e., in the proposed 2LTS a tournament subset always con-
tains two chromosomes. Chromosome v is stored in position k of
the population. Fig. 4 initializes variables k and sole_offspring to
2 and 12, respectively (the population is a set of 11 chromosomes).
Pair 1 is composed of chromosomes v = 2 and v = 3. In this exam-
ple ap = 80.91. The chromosome v = 3 in k = 3 has profit greater
than ap. On the other hand, chromosome v = 2 in k = 2 has profit
lower than ap, so chromosome swap occurs resulting in the selec-
tion of chromosome v = 3 as a mother chromosome, while chro-
mosome v = 2 is discarded, thus resulting in Fig. 5b. As Fig. 4



Elite Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

k 1 2 3 4 5 6 7 8 9 10 11 

1 2 3 4 5 6 7 8 9 10 11 

cpk 150 2 121 137 38 78 46 64 16 91 147 

a 

Elite Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

k 1 2 3 4 5 6 7 8 9 10 11 

1 3 2 4 5 6 7 8 9 10 11 

cpk 150 121 2 137 38 78 46 64 16 91 147 

b 

Elite Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

k 1 2 3 4 5 6 7 8 9 10 11 

1 3 2 4 5 6 7 8 9 10 11 

cpk 150 121 2 137 38 78 46 64 16 91 147 

c 

Elite Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

k 1 2 3 4 5 6 7 8 9 10 11 

1 3 2 4 5 10 11 8 9 6 7 

cpk 150 121 2 137 38 91 147 64 16 78 46 

d 

Elite Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

k 1 2 3 4 5 6 7 8 9 10 11 

1 3 2 4 5 11 10 8 9 6 7 

cpk 150 121 2 137 38 147 91 64 16 78 46 

e 

Elite Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

k 1 2 3 4 5 6 7 8 9 10 11 

1 3 2 4 5 11 10 8 9 6 7 

cpk 150 121 2 137 38 147 91 64 16 78 46 

f 

Fig. 5. Application example of the proposed two-level tournament selection (2LTS) operator. (a) Initial population, before the application of the proposed 2LTS operator.
Average profit of the population is ap = 80.91. (b–e) Intermediate population, during the application of the proposed 2LTS operator. (f) Final population, after the completion
of the proposed 2LTS operator.
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shows, following the swapping of the two chromosomes, the vari-
able k is increased by 2, so k = 4, effectively advancing to pair 2.

Analyzing pair swap, in Fig. 5c pair 3 receives the attention of
the 2LTS operator, so k = 6, which is composed of chromosomes
v = 6 and v = 7. It is observed that pair 3 has both chromosomes
under average profit. At first the variable sole_offspring is de-
creased by 2, so sole_offspring = 10, which now points to the first
chromosome contained in pair 5. Then the algorithm discards
chromosomes v = 6 and v = 7 by pair swap between pair’s 3 and
pair’s 5 chromosomes resulting in Fig. 5d. Pair swap always occurs
between a pair whose first chromosome is indicated by variable k
and has both chromosomes under average profit, and the pair
whose first chromosome is indicated by variable sole_offspring.
As Fig. 4 shows, following the swapping of the two pairs, the up-
dated pair 3, which is composed of chromosomes v = 10 and
v = 11, is checked again. It is observed that the updated pair 3 of
Fig. 5d has both chromosomes above average profit, so a tourna-
ment is held between these two chromosomes and finally chromo-
some v = 11 in k = 7 wins the tournament, so chromosome swap
occurs resulting in the selection of chromosome v = 11 as a mother
chromosome, while chromosome v = 10 is discarded, thus result-
ing in Fig. 5e.
Fig. 5f shows the final population after the completion of the
proposed 2LTS operator. The final value of variable sole_offspring
is 8, which indicates that pairs 1, 2, and 3 require a sole off-
spring, whereas pairs 4, and 5 require two offspring. The se-
lected mother chromosomes are lightly shaded and located in
even population locations: k = 2, k = 4, and k = 6. The dark shaded
elite chromosome in position k = 1 will mate with the mother
chromosome in position k = 2 and the sole offspring will be
placed in position k = 3. The same mating pattern applies to pairs
2 and 3. Moreover, the elite chromosome in position k = 1 will
remate with the mother chromosome in position k = 2 and the
first offspring will be placed in position k = 8, whereas the sec-
ond offspring will be placed in position k = 9. Similar mating pat-
tern applies to pair 5 where the elite chromosome in position
k = 1 will remate with the mother chromosome in position
k = 4 and the first and second offspring will be placed in posi-
tions 10 and 11, respectively.

The previous example showed that in the proposed 2LTS the
population is handled pair-wise so an even number of chromo-
somes are needed. The algorithm must also store the elite chromo-
some in position k = 1. Consequently, it is of the utmost importance
that the population size, which is user defined, is set to an odd



Hours (1-10)Unit
1 1 1 0 0 1 1 1 1 0 0
2 0 0 1 1 1 0 0 0 0 1
3 1 0 0 1 0 0 0 0 0 0
4 0 0 0 0 1 1 1 0 1 1
5 1 0 1 1 1 0 0 0 0 0
6 0 0 1 1 1 1 1 1 1 1
7 1 1 1 0 0 1 0 1 1 0
8 1 0 0 0 1 1 1 0 0 1
9 0 0 0 1 1 0 0 0 1 0

10 0 1 1 0 0 1 1 0 1 1

a 

Hours (1-10)Unit
1 1 1 1 0 1 1 0 0 1 0
2 0 0 0 0 0 1 1 1 1 0
3 1 1 1 1 0 0 0 1 1 1
4 0 0 0 0 1 1 0 0 1 0
5 1 0 0 1 1 1 0 0 0 0

b
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number greater than or equal to 3, i.e., at least three chromosomes
are needed, otherwise the algorithm will fail.

From the previous example it also emerges that the proposed
2LTS has an embedded auto-reset feature that original tournament
selection lacks. In original tournament selection there will always
be a chromosome that wins the tournament but this is not neces-
sarily the case with 2LTS. For instance, in 2LTS, let us suppose the
case that a feasible elite chromosome exists while the rest of the
population contains highly unfeasible solutions meaning that pen-
alties will be very high and as a consequence all these chromo-
somes will have highly negative profits. The population’s average
profit will then be high enough to cause the entire population to
be discarded. If this is the case, then the population (except the
elite chromosome) is reinitialized, which is the embedded auto-
reset feature of the proposed 2LTS.

It should be noted that the proposed mates selection mecha-
nism contributes to the reduction of the required CPU time as will
be shown in Section 4.
6 0 0 1 1 1 1 1 0 1 1
7 1 1 1 0 0 0 0 1 0 0
8 1 0 0 0 0 0 0 1 1 1
9 0 0 0 0 1 0 1 0 1 1

10 0 0 0 0 1 1 0 0 1 0

Hours (1-10)Unit
1 1 1 0 0 1 1 1 1 0 0
2 0 0 1 0 0 0 0 0 1 0
3 1 0 0 1 0 0 0 0 0 0
4 0 0 0 0 1 1 1 0 1 0
5 1 0 1 1 1 0 0 0 0 0
6 0 0 1 1 1 1 1 1 1 1
7 1 1 1 0 0 1 0 1 0 0
8 1 0 0 0 0 1 1 0 1 1
9 0 0 0 1 1 0 0 0 1 0

10 0 1 1 0 0 1 1 0 1 1

c

Hours (1-10)Unit
1 1 1 1 0 1 1 0 0 1 0
2 0 0 0 1 1 1 1 1 0 1
3 1 1 1 1 0 0 0 1 1 1
4 0 0 0 0 1 1 0 0 1 1
5 1 0 0 1 1 1 0 0 0 0
6 0 0 1 1 1 1 1 0 1 1
7 1 1 1 0 0 0 0 1 1 0
8 1 0 0 0 1 0 0 1 0 1
9 1 1 1 0 1 1 0 0 1 0

10 0 0 0 1 1 1 1 1 0 1

d

Fig. 6. Application example of the proposed multiple window crossover operator.
(a) Elite chromosome. (b) Mother chromosome. (c) First offspring. (d) Second
offspring (if required).
3.8. Mating

Mating operator blends information contained in the bit se-
quence of the parents. The minimal effectiveness of computational
experiments that were conducted using single-point, two-point
and uniform crossover lead to the conception of the proposed mul-
tiple window crossover.

The multiple window crossover is implemented using the fol-
lowing steps:

1. Rows and columns are randomly selected, where rows corre-
spond to units and columns correspond to hours. For example,
for the 10 h planning problem of the 10 units of Fig. 6, let us
suppose that the rows 1, 3, 5, 6, 9, 10 and the columns 2, 3, 6,
7, 8 have been selected.

2. The first offspring is created by copying from the elite chromo-
some the selected rows and columns of the first step, while any
remaining blanks are filled with bits copied from the mother
chromosome. For example, the elite chromosome of Fig. 6a
mates with the mother chromosome of Fig. 6b and produces
the offspring of Fig. 6c. More specifically, the offspring of
Fig. 6c has exactly the same bits with the elite chromosome
of Fig. 6a in the rows 1, 3, 5, 6, 9, 10 and in the columns 2, 3,
6, 7, 8. However, with this operation, nine windows are blank,
as Fig. 6c shows. The first blank window corresponds to row 2
and column 1, i.e., position (2, 1), so in this blank window, the
bit from position (2, 1) of the mother chromosome of Fig. 6b
is copied, that is why 0 is put in position (2, 1) of the offsping
of Fig. 6c. Similarly, the rest eight blank windows of Fig. 6c
are filled.

3. If there is a need for a second offspring (e.g., for the case of pair
4 and pair 5 of Fig. 5f), then this second offspring is created by
copying from the mother chromosome the selected rows and
columns of the first step, while any remaining blanks are filled
with bits copied from the elite chromosome. For example, the
elite chromosome of Fig. 6a mates with the mother chromo-
some of Fig. 6b and produces the offspring of Fig. 6d. More spe-
cifically, the offspring of Fig. 6d has exacly the same bits with
the mother chromosome of Fig. 6b in the rows 1, 3, 5, 6, 9, 10
and in the columns 2, 3, 6, 7, 8. However, with this operation,
nine windows are blank, as Fig. 6d shows. The first blank win-
dow corresponds to row 2 and column 1, i.e., position (2, 1),
so in this blank window, the bit from position (2, 1) of the elite
chromosome of Fig. 6a is copied, that is why 0 is put in position
(2, 1) of the offsping of Fig. 6d. Similarly, the rest eight blank
windows of Fig. 6d are filled.
3.9. Mutation

Mutation operators insert unanticipated disturbances to the
population in order to cause the exploration of new attractive re-
gions of objective function (6).

This paper introduces the concept of window in window muta-
tion operator. At first, a chromosome k > 1 and a unit i are ran-
domly selected. Then, for that unit i, an initial window of ones or
an initial window of zeros is randomly selected. If the selected ini-
tial window is a window of ones, then, starting at a random point
inside the initial window, a full of zeros internal window (with ran-
dom width greater than or equal to Tdown(i) so that the Tdown(i) con-
straint (9) is satisfied) overwrites previously set to one bits. On the
other hand, if the selected initial window is a window of zeros,



Hours (1-10)Unit
1           0         0       0 1 1 1 1 1 1       0 
2           1         1       1       1 0 0 0 0 0       1 

a 

Hours (1-10)Unit
1           0        0       0 1 0 0 0 0 1       0 
2           1        1       1        1 0 1 1 1 0       1 

b

Fig. 7. Application example of the proposed window in window mutation operator.
(a) Chromosome before mutation. (b) Chromosome after mutation.

Table 1
Price and demand forecast for 4 � 8+ test system.

Hour 1 2 3 4 5 6 7 8

Price ($/MW h) 32.1 44.56 51.47 48.34 41.18 34.1 28.4 22.1
Demand (MW) 214 227 238 235 225 214 210 205
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then the dual procedure is carried out and an internal window full
of ones overwrites previously set to zero bits.

Fig. 7 shows the application of the proposed window in window
mutation operator to the chromosome of Fig. 3, which is replicated
in Fig. 7a for presentation purposes. More specifically:

1. Let us suppose that for unit 1, the initial window of six consec-
utive ones, shown with dark shading in Fig. 7a, has been
selected. Next, an internal window width equal to 4 has been
randomly selected. Next, within the initial window of ones, an
internal window of four zeros starting from the randomly
selected hour 5, overwrites previously set to one bits. Finally,
as Fig. 7b shows, this internal window of four zeros starts at
hour 5, i.e., a window full of zeros from hour 5 to hour 8 is
inserted, which satisfies Tdown(1) constraint, since Tdown(1) = 3.

2. Let us suppose that for unit 2, the initial window of five consec-
utive zeros, shown with light shading in Fig. 7a, has been
selected. Next, an internal window width equal to 3 has been
randomly selected. Next, within the initial window of zeros,
an internal window of three ones starting from the randomly
selected hour 6, overwrites previously set to zero bits. Finally,
as Fig. 7b shows, this internal window of three ones starts at
hour 6, i.e., a window full of ones from hour 6 to hour 8 is
inserted, which satisfies Tup(2) constraint, since Tup(2) = 2.

The window in window mutation operator is applied NM times,
where NM is user defined. Larger settings for NM will result in a
population with more scattered chromosomes.

3.10. Elite mutation

This paper introduces the elite mutation operator, which inten-
sifies in the vicinity of the current best solution found by the MA.
This new operator is the local search scheme of the proposed MA.
The elite mutation operator is identical to the mutation operator
(Section 3.9) with the only difference that it is applied on the elite
chromosome of a generation using the following three user defined
parameters:

1. The elite chromosome mutation probability, ECMP, which
expresses the number of generations the elite mutation opera-
tor will be applied. As an example, if ECMP = 0.25 and the gen-
erations are 300, then the elite mutation will be applied to only
75 generations out of the 300 generations.

2. The elite chromosome mutated scenarios, ECMS, which
expresses the total number of mutated versions of the elite
chromosome that are created and evaluated in an attempt to
find a higher profit chromosome than the current elite chromo-
some. Consequently, a steepest policy rather than a best first
policy is utilized meaning that the current elite chromosome
is replaced only if after the evaluation of the ECMS mutated ver-
sions, the highest profit neighbour found has higher profit than
the current elite. As an example, if ECMS = 100 it means that
100 mutated versions of the elite chromosome will be
evaluated.
3. The number of elite mutations, NEM, which specifies the number
of times the window in window mutation operator (Section 3.9)
will be applied on the current elite chromosome, thus creating a
mutated version of it. As an example, if NEM = 4, it means that
every mutated version of the current elite chromosome will be
created by applying four times the window in window mutation
operator on the current elite chromosome. NEM has to be set to a
small number in order to take place the desired intensification,
otherwise the elite mutation operator will act as a diversification
operator and the algorithm will stagnate.

It should be noted that the GA of Section 4 does not include this
elite mutation operator, meaning that the GA does not apply local
search on the elite chromosome as the MA.
4. Results and discussion

4.1. Introduction

The proposed memetic algorithm is tested on six test systems,
out of which two are existing test systems of the PBUC literature
that do not include ramp up and ramp down constraints, while
the rest four are new PBUC test systems with ramp up and ramp
down constraints that are introduced in this paper so as to provide
new PBUC benchmarks for future research.

All test systems are named based on the number of units N and
the number of scheduling hours T, as follows: (a) N � T for the case
of excluding ramp up and ramp down constraints, or (b) N � T+ for
the case of including ramp up and ramp down constraints. This
coding shows that the postfix add sign (+) states that ramp up
and ramp down constraints are included.

The following procedure is implemented for all test systems:

1. The optimal parameter settings of the genetic algorithm (GA)
are identified. These parameters are: (i) the population size,
(ii) the penalty, (iii) the number of generations, and (iv) the
NM. It should be noted that the GA does not include the elite
mutation operator of Section 3.10. Next, 100 simulation runs
of the GA are executed, using the GA optimal parameter set-
tings, and the results are stored for comparison purposes.

2. The same optimal settings of the genetic algorithm are also
used for the memetic algorithm. Moreover, the optimal settings
of the additional parameters of the MA are identified. These
parameters are: (i) the ECMP, (ii) the ECMS, and (iii) the NEM.
Next, 100 simulation runs of the MA are executed, using the
MA optimal parameter settings, and the results are stored for
comparison purposes.

3. Each PBUC problem is also solved using the Lagrangian relaxa-
tion (LR) and the simulated annealing (SA) method.

4. The solutions of the above methods (GA, MA, SA, and LR) are
compared and conclusions are drawn. It should be noted that
these four methods have been implemented in C++ on a com-
puter with Pentium 1.5 GHz processor.

4.2. Existing test systems

Two existing test systems are used: (a) test system 10 � 24, the
data of which can be found in [32,45], where it is called A10 test
system, and (b) test system 110 � 24, the data of which can be



Table 2
Unit data for 4 � 8+ test system.

Unit i Pmin(i)
(MW)

Pmax(i)
(MW)

A(i)
($/h)

B(i)
($/MW h)

C(i)
($/MW2 h)

Tup(i)
(h)

Tdown(i)
(h)

X(i, 0)
(h)

Rup(i)
(MW/h)

Rdown(i)
(MW/h)

P(i, 0)
(MW)

D(i)
($/h)

E(i)
($/h)

CT(i)
(h)

SD(i)
($)

1 27 90 47.38 21.3913 0.06512 4 3 �1 61 74 0 25 30 5 8
2 38 150 43.49 19.1342 0.06124 3 2 2 45 63 72 105 100 4 12
3 80 230 39.67 16.2916 0.05768 4 3 �1 105 82 0 220 225 5 23
4 115 350 36.93 17.7604 0.05957 3 2 2 120 116 143 255 250 4 31

Table 3
Ramp up and ramp down constraints for 10 � 24+ test system.

Unit i 1 2 3 4 5 6 7 8 9 10

Rup(i) (MW/h) 35 66 80 55 143 128 271 55 161 143
Rdown(i) (MW/h) 55 70 93 118 139 261 276 83 150 87
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found in [32,45,46], where it is called A110 test system. The afore-
mentioned systems exclude ramp up and ramp down constraints.

4.3. New test systems

Four new test systems are introduced in this paper:

1. 4 � 8+ test system, the data of which are presented in Tables 1
and 2. This test system was on purpose selected to be relatively
small, so it can be solved by complete enumeration, which
guarantees the discovery of the global optimum, and this global
optimum is compared with the solution obtained by the MA as
an initial check of the ability of the proposed MA to find the glo-
bal optimum.

2. 10 � 24+ test system. This test system shares exactly the same
data as test system 10 � 24 with the addition of the ramp up
and ramp down constraints shown in Table 3.

3. 60 � 24+ test system. It is based on 10 � 24+. The 60 � 24+ test
system is created by copying six times the units of 10 � 24+ (it
means that units 1, 11, 21, 31, 41, and 51 are the same; units 2,
12, 22, 32, 42, and 52 are the same, etc.), by multiplying by six
the forecasted demand at each hour, while the price forecast is
the same as in 10 � 24 and 10 � 24+.
Table 4
Ramp up and ramp down constraints for 110 � 24+ test system.

Unit i 1 2 3 4 5 6 7

Rup(i) (MW/h) 5 11 10 5 3 11 6
Rdown(i) (MW/h) 11 9 10 5 10 12 6

Unit i 17 18 19 20 21 22 23

Rup(i) (MW/h) 144 106 95 124 148 192 163
Rdown(i) (MW/h) 125 92 89 140 117 183 157

Unit i 33 34 35 36 37 38 39

Rup(i) (MW/h) 63 167 254 379 31 42 60
Rdown(i) (MW/h) 36 123 351 203 33 53 88

Unit i 49 50 51 52 53 54 55

Rup(i) (MW/h) 26 49 44 13 55 18 14
Rdown(i) (MW/h) 52 14 46 15 57 13 32

Unit i 65 66 67 68 69 70 71

Rup(i) (MW/h) 126 122 110 128 157 313 318
Rdown(i) (MW/h) 81 94 111 168 142 248 233

Unit i 81 82 83 84 85 86 87

Rup(i) (MW/h) 26 32 69 97 243 422 16
Rdown(i) (MW/h) 44 34 53 77 145 272 22

Unit i 97 98 99 100 101 102 103

Rup(i) (MW/h) 12 8 19 10 49 42 55
Rdown(i) (MW/h) 11 11 9 21 45 22 51
4. 110 � 24+ test system. This test system shares exactly the same
data as test system 110 � 24 with the addition of the ramp up
and ramp down constraints shown in Table 4.

It should be noted that in the above mentioned systems, there is
a big variability in the electricity price during the scheduling hori-
zon. More specifically, three different electricity price profiles are
considered:

1. The electricity price for the 4 � 8+ test system ranges from
$22.100/MW h to $51.470/MW h, as can be seen from
Table 1.

2. The 10 � 24, 10 � 24+, and 60 � 24+ test systems have the
same electricity price profile. This electricity price is very low,
since it ranges from $1.899/MW h to $2.498/MW h [32]. This
electricity price profile can be seen in Fig. 9.

3. The 110 � 24 and 110 � 24+ test systems have the same elec-
tricity price profile. This electricity price ranges from $12.976/
MW h to $24.050/MW h [46].
4.4. Optimal parameter settings

Tables 5 and 6 present the optimal parameter settings of the GA
and MA, respectively, which were found after enough trials. As al-
ready mentioned, the same optimal parameter settings of the GA
are also used for the MA. The optimal settings of the three
additional parameters (i.e., ECMP, ECMS, NEM) of the MA are also
shown in Table 6.
8 9 10 11 12 13 14 15 16

9 8 34 18 66 16 26 83 98
5 6 27 32 38 32 90 58 53

24 25 26 27 28 29 30 31 32

279 118 230 429 402 79 74 34 19
143 243 232 456 341 53 90 23 11

40 41 42 43 44 45 46 47 48

67 78 114 320 362 505 688 15 22
102 107 77 337 448 544 590 25 6

56 57 58 59 60 61 62 63 64

34 54 48 87 60 78 50 79 57
31 50 91 81 59 68 114 128 150

72 73 74 75 76 77 78 79 80

278 136 183 87 19 342 513 74 74
165 122 222 64 15 406 519 59 84

88 89 90 91 92 93 94 95 96

55 39 42 63 43 116 380 142 376
54 24 148 118 90 390 106 515 214

104 105 106 107 108 109 110

117 93 213 101 83 160 97
67 76 123 498 54 217 82
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4.5. Results for 4 � 8+ test system

The 4 � 8+ test system was used as an initial test of the capabil-
ities of the proposed MA. Since 4 � 8+ is a relatively small test sys-
tem, the PBUC problem for this system was solved by complete
enumeration and the global optimum found had a total profit of
Table 6
MA optimum parameter settings.

Test system Population Penalty Generation

4 � 8+ 25 107 300
10 � 24 25 107 300
10 � 24+ 25 107 300
60 � 24+ 25 107 1000
110 � 24 25 107 1000
110 � 24+ 25 107 1000

Table 5
GA optimum parameter settings.

Test system Population Penalty Generations NM

4 � 8+ 25 107 300 200
10 � 24 25 107 300 25
10 � 24+ 25 107 300 25
60 � 24+ 25 107 1000 50
110 � 24 25 107 1000 6000
110 � 24+ 25 107 1000 6000
$24647.62, as computed by (6), while the respective global opti-
mum PBUC schedule is shown in Table 7.

It can be seen from Table 8 that the MA as well as the GA man-
aged to find the global optimum solution, using the optimal
parameter settings of Tables 6 and 5, respectively. LR and simu-
lated annealing (SA) also found the global optimum, as Table 8
shows. Moreover, after 100 simulation runs, the average profit
found by the proposed memetic algorithm is $24647.61. The
s NM ECMP ECMS NEM

200 0.25 100 4
25 0.25 100 5
25 0.25 100 5
50 0.40 150 2

6000 0.40 150 2
6000 0.40 150 2

Table 7
Global optimum PBUC schedule for 4 � 8+ test system.



Table 8
Profit ($) comparison for six test systems and four optimization methods.

Test system Parameter LR SA GA MA

4 � 8+ Best profit ($) 24647.62a 24647.62a 24647.62a 24647.62a

4 � 8+ Average profit ($) 24646.79 24647.27 24647.61
4 � 8+ Worst profit ($) 24638.53 24642.12 24646.95
4 � 8+ Success rate (%) 86 91 97

10 � 24 Best profit ($) 1897.01 1899.41a 1899.41a 1899.41a

10 � 24 Average profit ($) 1898.85 1899.21 1899.39
10 � 24 Worst profit ($) 1894.38 1896.15 1898.83
10 � 24 Success rate (%) 84 88 96

10 � 24+ Best profit ($) 1533.09 1534.40a 1534.40a 1534.40a

10 � 24+ Average profit ($) 1533.89 1534.06 1534.39
10 � 24+ Worst profit ($) 1530.23 1531.47 1533.92
10 � 24+ Success rate (%) 83 86 97

60 � 24+ Best profit ($) 9102.09 9128.45 9131.69 9154.83a

60 � 24+ Average profit ($) 9126.77 9129.83 9154.78
60 � 24+ Worst profit ($) 9123.58 9125.45 9153.51
60 � 24+ Success rate (%) 0 0 94

110 � 24 Best profit ($) 1369726.41 1373455.12 1374808.60 1378549.12a

110 � 24 Average profit ($) 1372783.58 1373858.28 1378415.76
110 � 24 Worst profit ($) 1369567.15 1370185.91 1376057.19
110 � 24 Success rate (%) 0 0 92

110 � 24+ Best profit ($) 1347553.75 1351588.38 1352677.25 1356988.62a

110 � 24+ Average profit ($) 1350645.23 1351293.37 1356763.04
110 � 24+ Worst profit ($) 1346989.12 1347539.75 1354316.53
110 � 24+ Success rate (%) 0 0 89

a This value is considered as the optimum solution (solution with best profit among all methods) for the respective test system and success rates are computed according to
this optimal solution for the respective test system.
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success rate of the proposed memetic algorithm is 97%, that is, 97
times out of 100 simulation runs the same optimal answer (i.e.,
$24647.62) is obtained. In addition to the best, average and worst
profit, the success rate is another very good measure for error anal-
ysis and comparison of metaheuristic methods (such as SA, GA, and
MA) [47], that is why the value of the success rate is given in Ta-
ble 8 for all the considered test systems and metaheuristic optimi-
zation methods. Since LR is a deterministic optimization method, it
always provides the same solution for the same problem, that is
why only this single value (best profit) is given in Table 8 for the
LR method.

4.6. PBUC results for test systems without ramp up and ramp down
constraints

Table 8 shows that for the 10 � 24 test system, the MA, GA, and
SA found the same best solution with $1899.41 profit, which is
0.13% higher than the profit found by LR.

In case of 110 � 24 test system, the best solution was found
only by the MA, as Table 8 shows, that is why the success rate is
zero for GA and SA. More specifically, the best solution of MA has
0.27%, 0.37%, and 0.64% higher profit in comparison with the best
profit of GA, SA, and LR, respectively.
Table 9
MA based PBUC schedule for 10 � 24+ test system.
In conclusion, among all the considered metaheuristic optimi-
zation methods and for all the examined test systems, the pro-
posed MA provides the highest success rate in finding the
optimal solution, as Table 8 shows.

The average CPU time needed by the MA to solve the 10 � 24
and the 110 � 24 test system is 4.04 and 492.84 s, respectively.

4.7. PBUC results for test systems with ramp up and ramp down
constraints

Table 8 shows that the proposed MA outperforms GA and SA for
4 � 8+, 10 � 24+, 60 � 24+, and 110 � 24+ test systems, since MA
provides higher average total profit over 100 simulation runs, high-
er worst profit, and higher success rate in comparison with GA and
SA. It can be also seen from Table 8 that for large test systems with
60 units or more, the MA constantly outperforms the LR, since the
profit calculated even by the worst MA solution is always higher
than the profit calculated by the LR method.

The inclusion of the ramp up and ramp down constraints obvi-
ously reduces the profit. In particular, the average profit computed
by the MA is higher for the 10 � 24 test system in comparison with
the 10 � 24+ system, as Table 8 shows. The same conclusion exists
for the 110 � 24 and 110 � 24+ test systems.
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Fig. 8 shows the average profit, after 100 simulation runs,
during each generation of the MA and the GA for the 10 � 24+
test system. It can be seen that both the MA and GA have quite
fast convergence rates, however the MA converges faster than
the GA.

Fig. 9 shows the electricity price profile together with the profit
curve that was found by the MA for the 10 � 24+ test system. It is
concluded from Fig. 9 that the maximum profit, i.e., $340.89, is ob-
tained during hour 24, when the energy price takes its maximum
value ($2.498/MW h). On the other hand, there is loss during hours
18–22, when the energy price takes very low values.

Table 9 shows the MA based PBUC schedule for the 10 � 24+
test system that corresponds to the maximum total profit of
$ 1534.40 found by the MA.

The average CPU time needed by the MA to solve the 4 � 8+,
10 � 24+, 60 � 24+, and 110 � 24+ test systems is 0.28, 5.11,
170.85, and 657.12 s, respectively.
5. Conclusion

An advanced memetic algorithm (MA) solution to the price
based unit commitment problem has been presented. The MA is
a valuable tool in searching large discrete solution spaces, and in
PBUC the solution space is quite large, making the MA ideal for
the PBUC problem. The main contributions of this paper are: (i)
an innovative two-level tournament selection, (ii) a new multiple
window crossover, (iii) a novel window in window mutation oper-
ator, (iv) an innovative local search scheme called elite mutation,
(v) new population initialization algorithm that is specific to PBUC
problem, and (vi) new PBUC test systems including ramp up and
ramp down constraints so as to provide new PBUC benchmarks
for future research.

The method has been challenged on test systems of up to
110 units and the results show that in every case examined
the proposed MA converged to higher profit PBUC schedules
than the genetic algorithm, the simulated annealing, and the
Lagrangian relaxation method. Moreover, among all the consid-
ered metaheuristic optimization methods and for all the exam-
ined test systems, the proposed MA provides the highest
success rate in finding the optimal solution. Furthermore, for
large test systems with 60 units or more, the proposed MA con-
stantly outperforms the LR, since the profit calculated even by
the worst MA solution is always higher than the profit calculated
by the LR method. Additionally, the proposed MA is feasible
from a computational viewpoint. Future work includes the inves-
tigation of ecological constraints and the simultaneous optimiza-
tion of energy and ancillary services markets.
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